#### **B.SC.-III (BOTANY) PAPER –I**

#### (ANALYTICAL TECHNOLOGY PLANT PATHOLOGY, EXPERIMENTAL EMBRYOLOGY, ELEMENTARY BIOSTATISTICS, ENVIRONMENTAL POLLUTION AND CONSERVATION)

#### **UNIT-I**

Structure, Principle and applications of analytical instrumentation.

Chromatography technique, Oven, Incubator, Autoclave, Centrifuge, Spectrophotometere

#### **UNIT-II**

Plant Tissue culture techniques, growth media, totipotency, protoplast culture, somatic hybrids and cybrids, micropropagation, somaclonal variations, haploid culture.

Analytical techniques: Microscopy-Light microscope, Electron microscope

#### **UNIT-III**

General principles of plant pathology, general symptoms of fungal, bacterial and viral diseases, mode of infection, diseases resistance and control measures, plant quarantine. A study of epidemiology and etiology of following plant diseases.

Rust diseases of wheat, Tikka diseases of groung nut, Red rot of sugar can, Bacterial blight of rice, Yellow vein mosaic of b hindi, Little leaf of brinjal.

#### **UNIT-IV**

Introduction to pollution, green house gases, Ozone depletion, Dissolve oxygen, B.O.D., C.O.D.

Bio magnification, Eutrophication, Acid precipitation, Phytoremediation, Plant indicators,. Biogeographical Zones of India, Concept of biodiversity, CBD, MAB, National parks and biodiversity Hot spots, Conservation strategies, Red Data Book, IUCN threat categories, invasive species, endemic species, concept of sustainable development.

#### **UNIT-V**

#### **ELEMENTARY BIOSTATISTICS:**

Introduction and application of Biostatics, measure of central tendency-Mean, Median, Mode, measures of dispersal-Standard deviation, standard error.

#### **Books Recommended:**

Singh, RS, Plant Diseases, Oxford & IBH, New Delhi.

Pandey, BP, Plant Pathology, S.Chand Publishing, New Delhi

Sharma, PD, Microbiology and Plant pathology, Rastogi Publications, Meerut

Sharma PD, Mycology and Phytopathology, Rastogi Publications, Meerut

Singh JS, Singh SP and Gupta, SR, *Ecology Environmental Science and Conservation*, S. Chand Publishing, New Delhi

Sharma, PD. Ecology and Environment, Rastogi Publications, Meerut

Bhojwani, SS and Razdan, MK, Plant Tissue Culture: Theory and Practices, Elsevier

Sharma AK, Text book of Biostatistics, Discovery Publishing House Pvt. Ltd.

(Dr. J.N. Verma) Rekha Pimpalgaonkar)

Dr.Ranjana Shristava)

Proff. & Head Proff. & Head Proff. & Head

Govt. D.B. Girls PG College Govt. N PG Science College Govt. VYTPG Science College

(Dr.

Raipur, (C.G.) Raipur, (C.G.)

(Mrs. Sanchal Moghe) (Mr. Shivakant Mishra) (Mr Sudheer Tiwari)

Govt. Bilasa Girls College, Bilaspur

#### **B.Sc.-III (BOTANY) PAPER –II**

## (GENETICS, MOLECULAR BIOLOGY, BIOTECHNOLOGY AND BIOCHEMISTRY)

#### **UNIT-I**

Cell and cell organelles, organization and morphology of chromosomes, giant chromosomes, cell division, Mendel's laws, gene interactions, linkage and crossing over, chromosomal aberration, polyploidy, sex linked inheritance, sex determination, cytoplasmic inheritance, gene concept: cistron, muton, recon.

#### **UNIT-II**

Nucleic acids, structure and forms of DNA and RNA, DNA/RNA as genetic material, replication of DNA, biochemical and molecular basis of mutation, genetic code and its properties, mechanism of transcription and translation in prokaryotes, regulation of gene expression, Operon model.

#### **UNIT-III**

Recombinant DNA, Enzymes in recombinant DNA technology, cloning vectors (Plasmid, Bacteriophages, Cosmids, Phagemids), gene cloning, PCR, Application of Biotechnology; G.M.Plants, Monoclonal antibodies, DNA finger printing

#### **UNIT-IV**

Protein: Chemical composition, primary, secondary and tertiary structure of Proteins.

Carbohydrate: general account of monosaccharides, disaccharids and Polysaccharides

Fat: Structure and properties of fats and fatty acids, synthesis and breakdown.

#### **UNIT-V**

ENZYMES: Nomenclature and classifaction, components of enzyme, theories of enzyme action, enzyme kinetics (Michaelis-Menten constant), allosteric enzymes, isozymes, Abzymes. Ribozymes, factors affecting enzyme activity.

#### **Books Recommended:**

Nelson, DL, Cox, MM, Lehninger *Principles of Biochemistry*, W.H. freeman and Company, New York, USA.

Cooper, GM, *The Cell: A Molecular Approach*, ASM Press & Sunderland, Washington, D.C. Sinauer Associates, MA.

Singh BD, Fundamental of Genetics, Kalyani Publication

Singh BD, Genetics, Kalyani Publication

Gupta, PK, Cell and Molecular Biology, Rastogi Publications, Meerut

Singh, BD, Biotechnology: Expanding Horizons, Kalyani publications

Gupta, PK, Elements of Plant Biotechnology, Rastogi Publications, Meerut

Gupta, SN, Concepts of Biochemistry, Rastogi Publications, Meeru

Jain, JL., Jain S, Jain, N, Fundamentals of Biochemistry, S Chand Publishing, New Delhi

#### **B.Sc.-III** (Botany)

#### **Practical**

- 1. Study of host parasite relationship pf plant diseases listed above.
- 2. Demonstration of preparation of Czapek's Dox medium and Potato dextrose agar medium, sterilization of culture medium and pouring.
- 3. Inoculation in culture tubes and petriplates.
- 4. Gram Staining.
- 5. Microscopic examination of Curd.
- 6. Study of plant diseases as listed in the theory paper.
- 7. Biochemical test of carbohydrate and protein.
- 8. Instrumentation techniques

#### PRACTICAL SCHEME

| TIME | : 4 Hrs.                   | <b>M.M.</b> : 50 |
|------|----------------------------|------------------|
| 1.   | Plant Disease/Symptoms     | 10               |
| 2.   | Instrumentation techniques | 05               |
| 3.   | Staining of Microbes       | 05               |
| 4.   | Tissue Culture techniques  | 05               |
| 5.   | Spotting                   | 10               |
| 6.   | Project Work/ Field Study  | 05               |
| 5.   | Viva-Voce                  | 05               |
| 6.   | Sessional                  | 05               |

Mag

(Dr. J.N. Verma) Dr.Ranjana Shristava) (Dr. Rekha Pimpalgaonkar)

Proff. & Head Proff. & Head Proff. & Head

Govt. D.B. Girls PG College Govt. N PG Science College Govt. VYTPG Science College

Raipur, (C.G.) Raipur, (C.G.)

(Mrs. Sanchal Moghe)

(Mr. Shivakant Mishra)

(Mr Sudheer Tiwari)

Govt. Bilasa Girls College, Bilaspur

#### **MATHEMATICS**

There shall be three theory papers. Two compulsory and one optional. Each paper carrying 50 marks is divided into five units and each unit carry equal marks.

#### B.Sc. Part-III PAPER - I ANALYSIS

#### **REAL ANALYSIS**

UNIT-I Series of arbitrary terms. Convergence, divergence and oscillation. Abel's and Dirichlet's test. Multiplication of series. Double series. Partial derivation and differentiability of real-valued functions of two variables. Schwarz and Young's theorem. Implicit function theorem. Fourier series. Fourier expansion of piecewise monotonic functions.

UNIT-II Riemann integral. Intergrability of continuous and monotonic functions. The fundamental theorem of integral calculus. Mean value theorems of integral calculus. Improper integrals and their convergence.
 Comparison tests. Abel's and Dirichlet' tests. Frullani's integral. Integral as a function of a parameter.
 Continuity, derivability and integrability of an integral of a function of a parameter.

#### **COMPLEX ANALYSIS**

UNIT-III Complex numbers as ordered pairs. Geometrical representation of complex numbers. Stereographic projection. Continuity and differentiability of complex functions. Analytic functions. Cauchy-Riemann equations. Harmonic functions. Elementary functions. Mapping by elementary functions. Mobius transformations. Fixed points, Cross ratio. Inverse points and critical mappings. Conformal mappings.

#### **METRIC SPACES**

**UNIT-IV** Definition and examples of metric spaces. Neighbourhoods, Limit points, Interior points, Open and Closed sets, Closure and interior. Boundary points, Sub-space of a metric space. Cauchy sequences, Completeness, Cantor's intersection theorem. Contraction principle, construction of real numbers as the completion of the incomplete metric space of rationals. Real numbers as a complete ordered field.

UNIT-V Dense subsets. Baire Category theorem. Separable, second countable and first countable spaces. Continuous functions. Extension theorem. Uniform continuity, isometry and homeomorphism. Equivalent metrics. Compactness, sequential compactness. Totally bounded spaces. Finite intersection property. Continuous functions and Compact sets, Connectedness, Components, Continuous functions and Connected sets.

#### **REFERENCES:**

- 1. T.M. Apostol, Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.
- 2. R.R. Goldberg, Real Analysis, Oxford & IBH publishing Co., New Delhi, 1970.
- 3. S. Lang, Undergraduate Analysis, Springer-Verlag, New York, 1983.
- 4. D. Somasundaram and B. Choudhary, A First Coarse in Mathematical Analysis, Narosa Publishing House, New Delhi, 1997.
- 5. Shanti Narayan, A Course of Mathematical Analysis, S. Chand & Co. New Delhi.
- 6. P.K. Jain and S.K. Kaushik, An introduction to Real Analysis, S. Chand & Co., New Delhi, 2000.
- 7. R.V. Churchill and J.W. Brown, Complex Variables and Applications, 5th Edition, McGraw-Hill, NewYork, 1990.
- 8. Mark J. Ablowitz and A.S. Fokas, Complex Variables : Introduction and Applications, Cambridge University Press, South Asian Edition, 1998.
- 9. Shanti Narayan, Theory of Functions of a Complex Variable, S. Chand & Co., New Delhi.
- 10. E.T. Copson, Metric Spaces, Cambridge University Press, 1968.
- 11. P.K. Jain and K. Ahmad, Metric Spaces, Narosa Publishing House, New Delhi, 1996.
- 12. G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, 1963.

#### B.Sc. Part-III PART - II ABSTRACT ALGEBRA

- **UNIT-I** Group-Automorphisms, inner automorphism. Automorphism of groups and their computations, Conjugacy relation, Normaliser, Counting principle and the class equation of a finite group. Center for Group of prime-order, Abelianizing of a group and its universal property. Sylow's theorems, Sylow subgroup, Structure theorem for finite Abelian groups.
- **UNIT-II** Ring theory-Ring homomorphism. Ideals and quotient rings. Field of quotients of an integral domain, Euclidean rings, polynomial rings, Polynomials over the rational field. The Eisenstien criterion, polynomial rings over commutative rings, Unique factorization domain. R unique factorisation domain implies so is  $R[x_1, x_2, ..., x_n]$ . Modules, Submodules, Quotient modules, Homomorphism and Isomorphism theorems.
- UNIT-III Definition and examples of vector spaces. Subspaces. Sum and direct sum of subspaces. Linear span, Linear dependence, independence and their basic properties. Basis. Finite dimensional vector spaces. Existence theorem for bases. Invariance of the number of elements of a basis set. Dimension. Existence of complementary subspace of a finite dimensional vector space. Dimension of sums of subspaces. Quotient space and its dimension.
- **UNIT-IV** Linear transformations and their representation as matrices. The Algebra of linear transformations. The rank nullity theorem. Change of basis. Dual space. Bidual space and natural isomorphism. Adjoint of a linear transformation. Eigenvalues and eigenvectors of a linear transformation. Diagonalisation. Annihilator of a subspace. Bilinear, Quadratic and Hermitian forms.
- UNIT-V Inner Product Spaces-Cauchy-Schwarz inequality. Orthogonal vectors. Orthogonal Complements. Orthonormal sets and bases. Bessel's inequality for finite dimensional spaces. Gram-Schmidt Orthogonalization process.

#### **REFERENCES:**

- 1. I.N. Herstein, Topics in Algebra, Wiley Eastern Ltd., New Delhi, 1975.
- 2. N. Jacobson, Basic Algebra, Vols. I & II. W.H. Freeman, 1980 (also published by Hindustan Publishing Company).
- 3. Shanti Narayan, A Text Book of Modern Abstract Algebra, S.Chand & Co. New Delhi.
- 4. K.B. Datta, Matrix and Linear Algebra, Prentice Hall of India Pvt. Ltd., New Delhi, 2000.
- 5. P.B. Bhattacharya, S.K. Jain and S.R. Nagpal, Basic Abstract Algebra (2"" Edition) Cambridge University Press, Indian Edition, 1997.
- 6. K. Hoffman and R. Kunze, Linear Algebra, (2nd Edition), Prentice Hall. Englewood Cliffs, New Jersey, 1971
- 7. S.K. Jain, A. Gunawardena and P.B. Bhattacharya, Basic Linear Algebra with MATLAB. Key College Publishing (Springer-Verlag) 2001.
- 8. S. Kumaresan, Linear Algebra, A Geometric Approach, Prentice-Hall of India, 2000.
- 9. Vivek Sahai and Vikas Bist, Algebra, Norosa Publishing House, 1997.
- 10. I.S. Luther and I.B.S.Passi, Algebra, Vol. I-Groups, Vol. II-Rings. Narosa Publishing House (Vol. I-1996, Vol. II-1999)
- 11. D.S. Malik, J.N. Mordeson, and M.K. Sen, Fundamentals of Abstract Algebra, McGraw-Hill International Edition, 1997.

## B.Sc. Part-III PAPER - III - (OPTIONAL) PRINCIPLES OF COMPUTER SCIENCE

- UNIT-I Data Storage Storage of bits. Main Memory. Mass Storage. Coding Information of Storage. The Binary System. Storing integers, storing fractions, communication errors.
   Data Manipulation The Central Processing Unit. The Stored-Program Concept. Programme Execution. Other Architectures. Arithmetic/Logic Instructions. Computer- Peripheral Communication.
- **UNIT-II Operating System and Networks -** The Evolution of Operating System. Operating System Architecture. Coordinating the Machine's Activities. Handling Competition Among Process. Networks. Networks Protocol.

**Software Engineering -** The Software Engineering Discipline. The Software Life Cycle. Modularity. Development Tools and Techniques. Documentation. Software Ownership and Liability.

- UNIT-III Algorithms The Concept of an Algorithm, Algorithm Representation. Algorithm Discovery. Iterative Structures. Recursive Structures. Efficiency and Correctness. (Algorithms to be implemented in C++).
   Programming Languages Historical Perspective. Traditional Programming Concepts, Program Units. Language Implementation. Parallel Computing. Declarative Computing.
- UNIT-IV Data Structures Arrays. Lists. Stacks. Queues. Trees. Customised Data Types. Object Oriented Programming.

**File Structure -** Sequential Files. Text Files. Indexed Files. Hashed Files. The Role of the Operating System.

**Database Structure -** General Issues. The Layered Approach to Database Implementation. The Relational Model. Object-Oriented Database. Maintaining Database Integrity. E-R models

UNIT-V Artifical Intelligence - Some Philosophical Issues. Image Analysis. Reasoning, Control System Activities. Using Heuristics. Artificial Neural Networks. Application of Artificial Intelligence.
 Theory of Computation - Turning Machines. Computable functions. A Non computable Function. Complexity and its Measures. Problem Classification.

#### **REFERENCES:**

1. J. Glen Brookshear, Computer Science: An Overview, Addition - Wesley.

**(I)** 

2. Stanley B. Lippman, Josee Lojoie, C++ Primer (3rd Edition), Addison-Wesley.

# B.Sc. Part-III PAPER - III - (OPTIONAL) (II) DISCRETE MATHEMATICS

- UNIT-I Sets and Propositions Cardinality. Mathematical Induction, Principle of inclusion and exclusion.
   Computability and Formal Languages Ordered Sets. Languages. Phrase Structure Grammars.
   Types of Grammars and Languages. Permutations. Combinations and Discrete Probability.
- **UNIT-II Relations and Functions -** Binary Relations, Equivalence Relations and Partitions. Partial Order Relations and Lattices. Chains and Antichains. Pigeon Hole Principle.
  - **Graphs and Planar Graphs -** Basic Terminology. Multigraphs. Weighted Graphs. Paths and Circuits. Shortest Paths. Eulerian Paths and Circuits. Travelling Salesman Problem. Planner Graphs. Trees.
- UNIT-III Finite State Machines Equivalent Machines. Finite State Machines as Language Recognizers.
   Analysis of Algorithms Time Complexity. Complexity of Problems. Discrete Numeric Functions and Generating Functions.
- UNIT-IV Recurrence Relations and Recursive Algorithms Linear Recurrence Relations with constant coefficients. Homogeneous Solutions. Particular Solution. Total Solution. Solution by the Method of Generating Functions. Brief review of Groups and Rings.
- UNIT-V Boolean Algebras Lattices and Algebraic Structures. Duality, Distributive and Complemented Lattices. Boolean Lattices and Boolean Algebras. Boolean Functions and Expressions. Prepositional Calculus. Design and Implementation of Digital Networks. Switching Circuits.

#### **REFERENCES:**

 C.L. Liu, Elements of Discrete Mathematics, (Second Edition), McGraw Hill, International Edition, Computer Science Series, 1986

#### B.Sc. Part-III PAPER - III - (OPTIONAL)

#### (III) PROGRAMMING IN C AND NUMERICAL ANALYSIS

(Theory & Practical)

Theory component will have maximum marks 30. Practical component will have maximum marks 20.

UNIT-I Programmer's model of a computer. Algorithms. Flow Charts. Data Types. Arithmetic and input/output instructions. Decisions control structures. Decision statements. Logical and Conditional operators. Loop. Case control structures. Functions. Recursions. Preprocessors. Arrays. Puppetting of strings. Structures. Pointers. File formatting.

#### **Numerical Analysis**

- UNIT-II Solution of Equations: Bisection, Secant, Regula Falsi, Newton's Method, Roots of Polynomials. Interpolation: Lagrange and Hermite Interpolation, Divided Differences, Difference Schemes, Interpolation Formulas using Differences. Numerical Differentiation. Numerical Quadrature: Newton-Cote's Formulas. Gauss Quadrature Formulas, Chebychev's Formulas.
- **UNIT-III Linear Equations:** Direct Methods for Solving Systems of Linear Equations (Guass Elimination, LU Decomposition, Cholesky Decomposition), Iterative Methods (Jacobi, GaussSeidel, Relaxation Methods).

**The Algebraic Eigenvalue problem:** Jacobi's Method, Givens' Method, Householder's Method, Power Method, QR Method, Lanczos' Method.

UNIT-IV Ordinary Differential Equations: Euler Method, Single-step Methods, Runge-Kutta's Method, Multistep Methods, Milne-Simpson Method, Methods Based on Numerical Integration, Methods Based on Numerical Differentiation, Boundary Value Problems, Eigenvalue Problems.

**Approximation:** Different Types of Approximation, Least Square Polynomial Approximation, Polynomial Approximation using Orthogonal Polynomials, Approximation with Trigonometric Functions, Exponential Functions, Chebychev Polynomials, Rational Functions.

#### **Monte Carlo Methods**

Unit-V Random number generation, congruential generators, statistical tests of pseudo-random numbers. Random variate generation, inverse transform method, composition method, acceptance rejection method, generation of exponential, normal variates, binomial and Poisson variates.

Monte Carlo integration, hit or miss Monte Carlo integration, Monte Carlo integration for improper integrals, error analysis for Monte Carlo integration.

#### **REFERENCES:**

- 1. Henry Mullish and Herbert L. Cooper, Spirit of C: An Introduction to Modern Programming, Jaico Publishers, Bombay.
- 2. B.W. Kernighan and D.M. Ritchie. The C Programming Language 2nd Edition, (ANSI features) Prentice Hall, 1989.
- 3. Peter A Darnel and Philip E. Margolis, C: A Software Engineering Approach, Narosa Publishing House, 1993
- 4. Robert C. Hutehisonand Steven B. Just, Programming using C Language, McGraw Hill, 1988.
- 5. Les Hancock and Morris Krieger, The C Primer, McGraw Hill, 1988.
- 6. V. Rajaraman, Programming in C, Prentice Hall of India, 1994.
- 7. Byron S. Gottfried, Theory and Problems of Programming with C, Tata McGraw-Hill Publishing Co. Ltd., 1998
- 8. C.E. Froberg, Introduction to Numerical Analysis, (Second Edition), Addison-Wesley, 1979.
- 9. James B. Scarborough, Numerical Mathematical Analysis, Oxford and IBHPublishing Co. Pvt. Ltd. 1966.

- Melvin J. Maron, Numerical Analysis A Practical Approach, Macmillan publishing Co., Inc. New York, 1982.
- 11. M.K. Jain, S.R.K. lyengar, R.K. Jain, Numerical Methods Problems and Solutions, New Age International (P) Ltd., 1996.
- 12. M.K. Jain, S.R.K. lyengar, R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International (P) Ltd., 1999.
- 13. R.Y. Rubistein, Simulation and the Monte Carlo Methods, John Wiley, 1981.
- 14. D.J. Yakowitz, Computational Probability and Simulation, Addison-Wesley, 1977.

# PAPER - III - (OPTIONAL) (IV) PRACTICAL PROGRAMMING IN C AND NUMERICAL ANALYSIS

#### LIST OF PRACTICAL TO BE CONDUCTED...

- 1. Write a program in C to find out the largest number of three integer numbers.
- 2. Write a program in C to accept monthly salary from the user, find and display income tax with the help of following rules:

Monthly Salary

9000 or more

40% of monthly salary

7500 or more

30% of monthly salary

7499 or less

20% of monthly salary

- 3. Write a program in C that reads a year and determine whether it is a leap year or not.
- 4. Write a program in C to calculate and print the first n terms of fibonacci series using looping statement.
- 5. Write a program in C that reads in a number and single digit. It determines whether the first number contains the digit or not.
- 6. Write a program in C to computes the roots of a quadratic equation using case statement.
- 7. Write a program in C to find out the largest number of four numbers using function.
- 8. Write a program in C to find the sum of all the digits of a given number using recursion.
- 9. Write a program in C to calculate the factorial of a given number using recursion.
- 10. Write a program in C to calculate and print the multiplication of given 2D matrices.
- 11. Write a program in C to check that whether given string palindrome or not.
- 12. Write a Program in C to calculate the sum of series:

$$1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots + \frac{1}{n!}x^n$$

- 13. Write a program in C to determine the grade of all students in the class using Structure. Where structure having following members name, age, roll, sub1, sub2, sub3, sub4 and total.
- 14. Write a program in C to copy one string to another using pointer. (Without using standard library functions)
- 15. Write a program in C to store the data of five students permanently in a data file using file handling.

#### **NEW CURRICULUM OF B.Sc. PART III**

#### **CHEMISTRY**

The new curriculum will comprise of three papers of 33, 33 and 34 marks each and practical work of 50 marks. The Curriculum is to be completed in 180 working days as per UGC norms and conforming to the directives of Govt. of Chhattisgarh. The theory papers are of 60 hrs. each duration and practical work of 180 hrs duration.

#### Paper – I INORGANIC CHEMISTRY

60 Hrs., Max Marks 33

#### **UNIT-I**

#### METAL-LIGAND BONDING IN TRANSITION METAL COMPLEXES

- (A) Limitations of valence bond theory, Limitation of Crystal Field Theory, Application of CFSE, tetragonal distortions from octahedral geometry, Jahn–Teller distortion, square planar geometry. Qualitative aspect of Ligand field and MO Theory.
- (B) Thermodynamic and kinetic aspects of metal complexes. A brief outline of thermodynamic stability of metal complexes and factors affecting the stability, substitution reactions of square planar complexes, Trans- effect, theories of trans effect. Mechanism of substitution reactions of square planar complexes.

#### **UNIT-II**

#### MAGNETIC PROPERTIES OF TRANSITION METAL COMPLEXES

Types of magnetic behavior, methods of determining magnetic susceptibility, spin only formula, L-S coupling, correlation of  $\mu_{so(spin\ only)}$  and  $\mu_{eff.}$  values, orbital contribution to magnetic moments, application of magnetic moment data for 3d metal complexes.

Electronic spectra of Transition Metal Complexes.

Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectro-chemical series. Orgel-energy level diagram for  $d^1$  and  $d^2$  states, discussion of the electronic spectrum of  $[Ti(H_2O)_6]^{3+}$  complex ion.

#### **UNIT-III**

#### ORGANOMETALLIC CHEMISTRY

Definition and classification of organometallic compounds on the basis of bond type. Concept of hapticity of organic ligands. Metal carbonyls: 18-electron rule, electron count of mononuclear,

polynuclear and substituted metal carbonyls of 3d series. General methods of preparation (direct combination, reductive carbonylation, thermal and photochemical decomposition) of mono and binuclear carbonyls of 3d series.

Structures of mononuclear and binuclear carbonyls of Cr, Mn, Fe, Co and Ni using VBT.  $\pi$ -acceptor behavior of CO (MO diagram of CO to be discussed), Zeise's salt: Preparation and structure.

#### Catalysis by Organometallic Compounds –

Study of the following industrial processes and their mechanism:

- 1. Alkene hydrogenation (Wilkinsons Catalyst)
- 2. Polymeration of ethane using Ziegler Natta Catalyst

#### **UNIT-IV**

#### **BIOINORGANIC CHEMISTRY**

Essential and trace elements in biological processes, Excess and deficiency of some trace metals, Toxicity of some metal ions (Hg, Pb, Cd and As), metalloporphyrins with special reference to hemoglobin and myoglobin. Biological role of alkali and alkaline earth metals with special reference to Ca<sup>2+</sup> and Mg<sup>2+</sup>, nitrogen fixation.

#### **UNIT-V**

**HARD AND SOFT ACIDS AND BASES (HSAB)** Classification of acids and bases as hard and soft. Pearson's HSAB concept, acid-base strength and hardness and softness. Symbiosis, Applications of HSAB principle.

#### **INORGANIC POLYMERS**

Types of inorganic polymers, comparison with organic polymers, synthesis, structural aspects and applications of silicones. Silicates, phosphazenes and polyphosphate.

#### REFERENCE BOOKS

- 1. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson and P. L. Gaus, Wiley.
- 2. Concise Inorganic Chemistry, J. D. Lee, ELBS.
- 3. Concepts of Models of Inorganic Chemistry, B. Douglas, D. Mc Daniel and J. Alexander, John Wiley.
- 4. Inorganic Chemistry, D. E. Shriver, P. W. Atkins and C. H. Langford, Oxford.

- 5. Inorganic Chemistry, W. W. Porterfield, Addison Wiley.
- 6. Inorganic Chemistry, A. G. Sharp, ELBS.
- 7. Inorganic Chemistry, G. L. Miessler and D. A. Tarr, Prentice Hall.
- 8. Advanced Inorganic Chemistry, Satya Prakash.
- 9. Advanced Inorganic Chemistry, Agarwal and Agarwal.
- 10. Advanced Inorganic Chemistry, Puri, Sharma, S. Naginchand.
- 11. Inorganic Chemistry, Madan, S. Chand.
- 12. Aadhunik Akarbanic Rasayan, A. K. Shrivastav & P. C. Jain, Goel Pub.
- 13. Uchchattar Akarbanic Rasayan, satya Prakash & G. D. Tuli, Shyamal Prakashan.
- 14. Uchchattar Akarbanic Rasayan, Puri & Sharma.
- 15. Selected topic in Inorganic Chemistry by Madan Malik & Tuli, S. Chand.

#### Paper – II ORGANIC CHEMISTRY

60 Hrs. Max Marks 33

#### **UNIT-I**

#### HETEROCYCLIC COMPOUNDS

Classification and nomenclature, Structure, aromaticity in 5-membered and 6-membered rings containing one heteroatom; Synthesis, reactions and mechanism of substitution reactions of: Furan, Pyrrole (Paal-Knorr synthesis, Knorr pyrrole synthesis, Hantzsch synthesis), Thiophene, Pyridine (Hantzsch synthesis), Indole (Fischer indole synthesis and Madelung synthesis), Quinoline and isoquinoline, (Skraup synthesis, Friedlander's synthesis, Knorr quinoline synthesis, Doebner-Miller synthesis, Bischler-Napieralski reaction, Pictet- Spengler reaction, Pomeranz-Fritsch reaction).

#### **UNIT II**

#### A. ORGANOMETALLIC REAGENT

Organomagnesium compounds: Grignard reagents formation, structure and chemical reactions.

Organozinc compounds: formation and chemical reactions.

Organolithium compounds: formation and chemical reactions.

#### B. ORGANIC SYNTHESIS VIA ENOLATES

Active methylene group, alkylation of diethylmalonate and ethyl acetoacetate, Synthesis of ethyl acetoacetate: The Claisen condensation. Keto-enol tautomerism of ethyl acetoacetate. Robbinson annulations reaction.

#### **UNIT-III**

#### **BIOMOLECULES**

#### A. CARBOHYDRATES

Occurrence, classification and their biological importance. Monosaccharides: relative and absolute configuration of glucose and fructose, epimers and anomers, mutarotation, determination of ring size of glucose and fructose, Haworth projections and conformational structures; Interconversions of aldoses and ketoses; Killiani Fischer synthesis and Ruff degradation; Disaccharides – Structural comparison of maltose, lactose and sucrose. Polysaccharides – Elementary treatment of starch and cellulose.

#### B. AMINO ACIDS, PROTEINS AND NUCLEIC ACIDS

Classification and Nomenclature of amino acids, Configuration and acid base properties of

amino acids, Isoelectric Point, Peptide bonds, Protein structure, denaturation/ renaturation, Constituents of nucleic acid, DNA, RNA nucleoside, nucleotides, double helical structure of DNA.

#### **UNIT-IV**

#### SYNTHETIC POLYMERS

**A.** Addition or chain growth polymerization, Free radical vinyl polymerization, Ziegler-Natta polymerization, Condensation or Step growth polymerization, polyesters, polyamides, phenols- formaldehyde resins, urea-formaldehyde resins, epoxy resins and polyurethanes, natural and synthetic rubbers.

#### **B. SYNTHETIC DYES**

Colour and constitution (Electronic Concept). Classification of Dyes. Chemistry of dyes. Chemistry and synthesis of Methyl Orange, Congo Red, Malachite Green, Crystal Violet, phenolphthalein, fluorescein, Alizarine and Indigo.

#### **UNIT-V**

#### A. INFRA-RED SPECTROSCOPY

Basic principle, IR absorption Band their position and intensity, IR spectra of organic compounds.

#### **B. UV-VISIBLE SPECTROSCOPY**

Beer Lambert's law, effect of Conjugation, Types of electronic transitions  $\lambda_{max}$ , Chromophores and Auxochromes, Bathochromic and Hypsochromic shifts, Intensity of absorption Visible spectrum and colour.

#### C. NMR SPECTROSCOPY

Basic principles of Proton Magnetic Resonance, Tetramethyl silane (TMS) as internal standard, chemical shift and factors influencing it; Spin – Spin coupling and coupling constant (J); Anisotropic effects in alkene, alkyne, aldehydes and aromatics, Interpretation of NMR spectra of simple organic compounds. <sup>13</sup>CMR spectroscopy: Principle and applications.

#### REFERENCE BOOKS

- 1. Organic Chemistry, Morrison and Boyd, Prentice-Hall.
- 2. Organic Chemistry, L. G. Wade Jr. Prentice Hall.

- 3. Fundamentals of Organic Chemistry, Solomons, John Wiley.
- 4. Organic Chemistry, Vol I, II, III S. M. Mukherjee, S. P. Singh and R. P. Kapoor, Wiley Easters (New Age).
- 5. Organic Chemistry, F. A. Carey, McGraw Hill.
- 6. Introduction to Organic Chemistry, Struiweisser, Heathcock and Kosover, Macmillan.
- 7. Acheson, R.M. Introduction to the Chemistry of Heterocyclic compounds, John Wiley & Sons (1976).
- 8. Graham Solomons, T.W. Organic Chemistry, John Wiley & Sons, Inc.
- 9. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning IndiaEdition, 2013.
- 10. Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd. Pub.
- 11. Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.

Paper – III PHYSICAL CHEMISTRY

60 Hrs., Max Marks 34

**UNIT-I** 

**QUANTUM MECHANICS-I** 

Black-body radiation, Planck's radiation law, photoelectric effect, Compton effect. Operator: Hamiltonian operator, angular momentum operator, Laplacian operator, postulate of quantum mechanics, eigen values, eigen function, Schrodinger time independent wave equation, physical significance of  $\psi$  &  $\psi^2$ , application of Schrodinger wave equation to particle in a one dimensional box, hydrogen atom (separation into three equations ) radial and angular wave

functions.

**UNIT-II** 

A. QUANTUM MECHANICS-II

Quantum Mechanical approach of Molecular orbital theory, basic ideas-criteria for forming M.O. and A.O., LCAO approximation, formation of  $H_2^+$  ion, calculation of energy levels from wave functions, bonding and antibonding wave functions, Concept of  $\sigma$ ,  $\sigma^*$ ,  $\pi$ ,  $\pi^*$  orbitals and their characteristics, Hybrid orbitals-sp,sp<sup>2</sup>,sp<sup>3</sup> Calculation of coefficients of A.O.'s used in

these hybrid orbitals.

Introduction to valence bond model of H<sub>2</sub>, comparison of M.O. and V.B. models. Huckel

theory, application of Huckel theory to ethene, propene, etc.

**UNIT III** 

**SPECTROSCOPY** 

**Introduction**: Characterization of Electromagnetic radiation, regions of the spectrum, representation of spectra, width and intensity of spectral transition, Rotational Spectrum of Diatomic molecules. Energy levels of a rigid rotor, selection rules, determination of bond length, qualitative description of non-rigid rotator, isotopic effect.

**Vibrational Spectroscopy:** Fundamental vibration and their symmetry vibrating diatomic molecules, Energy levels of simple harmonic oscillator, selection rules, pure vibrational spectrum, determination of force constant, anharmonic oscillator

**Raman spectrum:** Concept of polarizability, quantum theory of Raman spectra, stokes and antistokes lines, pure rotational and pure vibrational Raman spectra. Applications of Raman Spectra.

Electronic Spectroscopy: Basic principles, Electronic Spectra of diatomic molecule, Franck-

Condon principle, types of electronic transition, application of electronic spectra.

#### **UNIT-IV**

#### **ELECTROCHEMISTRY-I**

- **A.** Electrolytic conductance: Specific and equivalent conductance, measurement of equivalent conductance, effect of dilution on conductance, Kohlrausch law, application of Kohlrausch law in determination of dissociation constant of weak electrolyte, solubility of sparingly soluble electrolyte, absolute velocity of ions, ionic product of water, conductometric titrations.
- **B.** Theories of strong electrolyte: limitations of Ostwald's dilution law, weak and strong electrolytes, Elementary ideas of Debye-Huckel-Onsager's equation for strong electrolytes, relaxation and electrophoretic effects.
- **C.** Migration of ions: Transport number, Determination by Hittorf method and moving boundary method, ionic strength.

#### **UNIT-V**

#### **ELECTROCHEMISTRY-II**

- **A.** Electrochemical cell and Galvanic cells reversible and irreversible cells, conventional representation of electrochemical cells, EMF of the cell and effect of temperature on EMF of the cell, Nernst equation Calculation of  $\Delta G$ ,  $\Delta H$  and  $\Delta S$  for cell reactions.
- **B.** Single electrode potential : standard hydrogen electrode, calomel electrode, quinhydrone electrode, redox electrodes, electrochemical series
- C. Concentration cell with and without transport, liquid junction potential, application of concentration cells in determining of valency of ions, solubility product and activity coefficient
- **D.** Corrosion-types, theories and prevention

#### **REFERENCE BOOKS**

- 1. Physical chemistry, G.M.Barrow. International Student Edition McGraw Hill.
- 2. University General Chemistry, CNR Rao, Macmillan.
- 3. Physical Chemistry R.A.Alberty, Wiley Eastrn.
- 4. The elements of Physical Chemistry P.W.Alkin,Oxford.
- 5. Physical Chemistry through problems, S.K.Dogra, Wiley Eastern.
- 6. Physical Chemistry B.D.Khosla.
- 7. Physical Chemistry, Puri & Sharma.
- 8. Bhoutic Rasayan, Puri & Sharma.
- 9. Bhoutic Rasayan, P.L.Soni.
- 10. Bhoutic Rasayan, Bahl & Tuli.
- 11. Physical Chemistry, R.L.Kapoor, Vol- I-IV.
- 12. Introduction to quantum chemistry, A.K. Chandra, Tata McGraw Hill.
- 13. Quantum Chemistry, Ira N. Levine, Prentice Hall.

#### **B.Sc. Part-III**

#### **PRACTICAL**

Max. Marks-50

#### INORGANIC CHEMISTRY

#### Gravimetric analysis:

- Estimation of nickel (II) using Dimethylglyoxime (DMG).
- Estimation of copper as CuSCN
- Estimation of iron as Fe<sub>2</sub>O<sub>3</sub> by precipitating iron as Fe(OH)<sub>3</sub>.
- Estimation of Al (III) by precipitating with oxine and weighing as Al(oxine)<sub>3</sub> (aluminium oxinate).
- Estimation of Barium as BaSO<sub>4</sub>

#### **Inorganic Preparations:**

- Tetraamminecopper (II) sulphate, [Cu(NH<sub>3</sub>)<sub>4</sub>]SO<sub>4</sub>.H<sub>2</sub>O
- Cis and trans K[Cr(C<sub>2</sub>O<sub>4</sub>)<sub>2</sub>. (H<sub>2</sub>O)<sub>2</sub>] Potassium dioxalatodiaquachromate(III)
- Tetraamminecarbonatocobalt (III) ion
- Potassium tris(oxalate)ferrate(III)/ Sodium tris(oxalate)ferrate(III)
- Cu(I) thiourea complex, Bis (2,4-pentanedionate) zinc hydrate; Double salts (Chrome alum/ Mohr's salt)

#### **ORGANIC CHEMISTRY**

- 1. Preparation of organic Compounds
  - Acetylation of one of the following compounds: amines (aniline, o-, m-, p- toluidines and o-,m-, p-anisidine) and phenols (β-naphthol, vanillin, salicylic acid)
  - Benzolyation of one of the following amines (aniline, o-, m-, p- toluidines and o-, m-, panisidine) and one of the following phenols ( $\beta$ -naphthol, resorcinol, p cresol) by Schotten-Baumann reaction.
  - Bromination of any one of the following: a. Acetanilide by conventional methods b.Acetanilide using green approach (Bromate-bromide method)
  - Nitration of any one of the following: a. Acetanilide/nitrobenzene by conventional method b. Salicylic acid by green approach (using ceric ammonium nitrate).
  - Reduction of p-nitrobenzaldehyde by sodium borohydride.
  - Hydrolysis of amides and esters.
  - Semicarbazone of any one of the following compounds: acetone, ethyl methyl ketone, cyclohexanone, benzaldehyde.

- Benzylisothiouronium salt of one each of water soluble and water insoluble acids (benzoic acid, oxalic acid, phenyl acetic acid and phthalic acid).
- Aldol condensation using either conventional or green method.
- Benzil-Benzilic acid rearrangement.
- Preparation of sodium polyacrylate.
- Preparation of urea formaldehyde.
- Preparation of methyl orange.

The above derivatives should be prepared using 0.5-1g of the organic compound. The solid samples must be collected and may be used for recrystallization, melting point and TLC.

- 2. Qualitative Analysis Analysis of an organic mixture containing two solid components using water, NaHCO<sub>3</sub>, NaOH for separation and preparation of suitable derivatives.
- 3. Extraction of caffeine from tea leaves.
- 4. Analysis of Carbohydrate: aldoses and ketoses, reducing and non-reducing sugars.
- 5. Identification of simple organic compounds by IR spectroscopy and NMR spectroscopy. (Spectra to be provided).
- 6. Estimation of glycine by Sorenson's formalin method.
- 7. Study of the titration curve of glycine.
- 8. Estimation of proteins by Lowry's method.
- 9. Study of the action of salivary amylase on starch at optimum conditions.
- 10. Effect of temperature on the action of salivary amylase.

#### PHYSICAL CHEMISTRY

#### Conductometry

- Determination of cell constant
- Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
- Perform the following conductometric titrations:
  - i. Strong acid vs. strong base
  - ii. Weak acid vs. strong base
  - iii. Mixture of strong acid and weak acid vs. strong base
  - iv. Strong acid vs. weak base
- To determine the strength of the given acid conductometrically using standard alkali solution.
- To determine the solubility and solubility product of a sparingly soluble electrolyte conductometrically
- To study the saponification of ethyl acetate conductometrically.

#### Potentiometry/pH metry

Perform the following potentio/pH metric titrations:

- i. Strong acid vs. strong base
- ii. Weak acid vs. strong base
- iii. Dibasic acid vs. strong base
- iv. Potassium dichromate vs. Mohr's salt
- v. Determination of pKa of monobasic acid

#### UV/ Visible spectroscopy

- Verify Lambert-Beer's law and determine the concentration of CuSO<sub>4</sub>/KMnO<sub>4</sub>/K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in a solution of unknown concentration
- Determine the concentrations of KMnO<sub>4</sub> and K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> in a mixture.
- Study the kinetics of iodination of propanone in acidic medium.
- Determine the amount of iron present in a sample using 1,10-phenathroline.
- Determine the dissociation constant of an indicator (phenolphthalein).
- Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium hydroxide.
- Study of pH-dependence of the UV-Vis spectrum (200-500 nm) of potassium dichromate.
- Spectral characteristics study (UV) of given compounds (acetone, acelaldehyde, acetic acid, etc.) in water.
- Absorption spectra of KMnO<sub>4</sub> and  $K_2Cr_2O_7$  (in 0.1 M  $H_2SO_4$ ) and determine  $\lambda_{max}$  values.

#### *Note:* Experiments may be added/deleted subject to availability of time and facilities

#### **REFERENCE BOOKS:**

- 1. Vogel, A.I. Quantitative Organic Analysis, Part 3, Pearson (2012).31
- 2. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- 3. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Practical Organic Chemistry, 5th Ed., Pearson (2012)
- 4. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).
- 5. Ahluwalia, V.K. & Dhingra, S. Comprehensive Practical Organic Chemistry: Qualitative Analysis, University Press (2000)
- 6. Manual of Biochemistry Workshop, 2012, Department of Chemistry, University of Delhi.

Five experiments are to be performed.

1. **Inorganic** - Two experiments to be performed. Gravimetric estimation compulsory

**08 marks**. (Manipulation 3 marks)

Anyone experiment from synthesis and analysis

04 marks.

2. **Organic** - Two experiments to be performed. Qualitative analysis of organic mixture containing two solid components. compulsory carrying **08 marks** (03 marks for each compound and two marks for separation).

One experiment from synthesis of organic compound (Single step)

04 marks.

3. Physical-One physical experiment

12 marks.

4. Sessional

04 marks.

5. Viva Voce

10 marks.

In case of Ex-Students one mark each will be added to Gravimetric analysis and Qualitative analysis of organic mixture and two marks in Physical experiment.

BSC(CS) TT Year

#### COMPUTTER SCIENCE

#### PAPER - I

#### (Paper Code-0909)

#### COMPUTER HARDWARE PART-C

The emphasis is on the design concepts & organisational details of the common PC, leaving the complicated Electronics of the system to the computer engineers.

#### Objective of the Course :

- To introduce the overall organisation of the microcomputers and operating systems.
- To introduce the interaction of common devices used with computers with operating softwares, excluding the Assembly languages, with special reference to DOS/WINDOWS.
- 3. To introduce the working of hardware components, Micro-Processor and various chips used in micro-computers by operating system, without the use of electronic
- 4 To introduce the use of operating systems architecture with IBM-PC & clones, excluding Assembly language, with forms an important part of hardwares.
- Since the computer organisation study is very vast & complicated, so the study is restricted only to the description and understanding part, hence the paper-setter is requested to keep this important factor in mind.

#### UNIT-1 : ORGANISATION OF Micro-Processor & MIRCO-COMPUTER :-

- Introduction & organisation of Micro-Computer :
  - (a) Basic Components of Micro-computer : Basic Block; Prom ram memory; Data memory; I/O Ports; Clock generator; Integration of functional blocks.
  - b) Interconnecting Components in a Micro-computer : Necessary functional block; Bussed architecture for microcomputer; memory addressing; Addressing I/O ports; comparision of I/O mapped and memory mapped I/O.
  - (d) Input Output Techniques : Non-CPU devices, Program & interrupt controlled I/O; Hardware controlled I/O or DMA.
- An Introduction to the various as :
  - (a) General understanding of different µP or CPU: Intel 8088, 286, 386, 486, 586 Pentium, P54C, MMX P55C; Motorola 6800 & 88100 series; CYRIX & AMD CPUs.
  - b) The Registers of CPU: (Give Example of P-8088) Register organisation of 8088, Scrach pad segment, pointer, Index and Flag, Registers.
  - d Memory addressing modes of P-8088 : Segment offset; Data addressing modes; Addressing for branch instructions.
  - d I/O Addressing with P-8088 : Memory mapped I/O & I/O mapped I/O.

#### UNIT-2 : SYSTEM HARDWARE ORGANISATION OF COMPUTERS :

- 1 Hardware Organisation of the Personal Computer :
  - (a) Block diagram with various parts of PC.
  - b) The Mother Board of General P.C.: 8088 CPU; ROM & RAM; Keyboard

B.Sc.-III

Juner Gardolle Hair handen hund for Honor hand for Hair handen hund for Hair handen hund for the honor hand for the honor hand

(D. J. Dry Pd. Rue)

- & its interface; System timer/counters; Hardware interrupt vectoring; DMA controller & channels; Interfacing to audio speaker; Bus slots & facture cards.
- (d) The Serial I/O ports, COM-1 & COM-2.
- (d) The parallel Port for Printer.
- (e) Expansion Slots for RAM.
- f Disk Controllers : For floppy, Hard disk, CD-ROM & Cassets drives.

#### 2. The Video Display of PCs :

- (a) Video Monitors; Monochrome and colour.
- b) Video Display Adapters & Their Video Modes; Monochrome & colour graphics adapters.
- d Video Control Through ANSI-SYS.
- d Video Control Through ROM-BOIS : INT 10H.
- Direct Video Control; Monochrom & colour graphics adapters.
- Installing Customized Character Sets.

#### UNIT-3 : ORGANISATION OF OPERTING SYSTEM WITH SYSTEM HARDWARE :

#### The ROM-BIOS Services :

- (a) Introduction to UNIX, ENIX, SUN, solaris, DOS & MAC with special reference to DOS & Windows, its ver., as DOS becomes more popular than others in PCs.
- (b) The ROM-BIOS Diskette Services, INT 13H.
- d The ROM-BIOS Serial Port Services, INT 14H.
- (d) The ROM-BIOS Keyboard Services, INT 16H.
- (e) The ROM-BIOS Printer Services, INT 17H.
- Miscellaneous Service Provided by the ROM-BIOS : INT 05H, INT 11H, INT 12H, INT 18H, INT 19H, INT 1AH.

#### The fundamental of Operating System viz. DOS/WINDOWS :

- (a) The loading of DOS & Its Basic Structure ; ROM bootstrap, IO.SYS, DOS.SYS & Command..COM.
- b) The Execution of the programs under DOS; EXEC functions, program segment prefix; Features of COM & EXE program files.
- d Device Handling by Dos ; FDD, HDD, CON, Keyboard, PRN, AUX, CLOCK and NUL devices; Block devices; Character devices; Driver installation sequence.
- d File Structures of DOS ;
- (e) The DOS Interrupts : INT 20H-2FH
- The DOS functions through INT 21H; Discuss only the understanding part of various other DOS function to handle hard & softwares.
- (9) Installation of windows: Important system files in windows.

#### UNIT-4 : ORGANIZATION & HANDLING BY OPERATING SYSTEMS :

#### 1 Disk and Files under DOS :

(a) Logical Structure of a Disk : Organisation of disk for use; Boot record ; FAT

B.93.-III

oug kumer ( CL.K. Gavel) Hav Manden Proposed Findle (Dr. J. Day W. Gra) files; disk or root directory.

- b) File Organisation on a DOS disk : Logical volumes ; Sub directories; Volume
- d Manipulating Files under DOS : File attributes ; date and time, file Access; FOB functions.

#### Memory Allocation, Program Loading and Execution:

- (a) Memory Management under DOS : EXEC loader; Memory Management & its functions; Modifying a Program's memory allocation.
- (b) Loading and Executing Programs under DOS: The EXEC function; Memory considerations; parameter blocks; calling & returning from EXEC.
- (d) Loading the program overlays through EXEC.

#### UNIT-5 : ORGANISATION OF HARDWARE BY OPERATING SYSTEM :

- Interrupt Handling through DOS :
  - (a) Types of interrupts.
  - (b) Interrupt Vector Table in PC.
  - d Interrupt Service Routines.
  - 6) Special Interrupts in PC : Clock Interrupt; The -C or Break Interrupt ; DOS reserved interupt INT 28H; Patching memory resident routines.

#### 2. Filters for DOS :

- (a) Filters in operating systems.
- (b) Redirection of I/O under DOS.
- (d) The Filters Supplied with DOS.
- () Writing Filters to run under DOS.

#### 3. Handling of Various Versions of Windows O.S. :

- (a) Setup Installation
- (b) Trouble shooting
- (d) Networking features

#### Text Book :

1 Hardware and Software of Personal Computers. By Sanjay K. Bose. (Wiley Eastern Ltd. New Delhi).

#### Supporting Text Books :

- 1 Digital System from Gates to Mircoprocessor. By Sanjay K. Bose. (Wiley Eastern Ltd. New Delhi).
- 2 Computer Fundamentals : Architecture & Organisation. By B. Ram.. (Wiley Eastern Ltd. New Delhi).

#### Reference Books :

- 1 IBM PC-XT and Clones : By Govinda Rajalu.
- 2 Microprocessor and interfacing: By Douglas Hall.
- 3. Insight the IBM-PC : Peter Norton.
- 4 Micriprocessor System: 8086/8088 family architecture, programming & design : By Liu and Gibson.

Sever Gard Ball8

11.06.18

11.06.18

11.06.18

11.06.18

(Dr. J.Duga Pd. Res )

(50) (Dr. A. K. Didived

#### PAPER - II

#### (Paper Code-0910)

Atm : To introduce DBMS and RDBMS using Back-end tool and Front-end tool. Object of the Course :

- To introduce Data BAse Management System concepts.
- 2 To introduce the Relational Database Management System and Relational Database Design.
- 3 To introduce the RDBMS software and utility of query language.
- 4. To introduce basic concept of GUI Programming and database connectivity using Visual Basic.

#### UNIT-1 : CONCEPT OF D.B.M.S. AND DATA MODELS

- (a) Introduction to DBMS :- Purpose of Data base systems, views of data, Data Modeling Database Languages, Transaction management, Storage Management, Database Administrator and User, Database System Structure.
- b E-R Model : Basic concepts, Constraints, Keys, Mapping Constaint, E-R Diagram, Weak and Strong Entity sets, E-R Database Schema, Reduction of an E-R Schema to Table.

#### UNIT-2. : RELATIONAL DATABASE MANAGEMENT SYSTEM

- Relational Model : Structure of Relational Database, Relational Algebra, Domain Relational Calculus, Extended Relational- Algebra Operation, Modification of database, Views.
- b Relational Database Design : Pitfalls in Relational Database Desing, Decomposition Functional Dependencies, Normalization: 1NF, 2NF, BCNF, 3NF, 4NF,

#### UNIT-3 : INTRODUCTION TO RDBMS SOFTWARE - ORACLE

- (A) Introduction: Introduction to personal and Enterprises Oracle, Data Types, Commercial Query Language, SQL, SQL\*PLUS.
- b) DDL and DML : Creating Table, Specifying Integrity Constraint, Modifying Existing Table, Dropping Table, Inserting Deleting and Updating Rows in as Table, Where Clause, Operators, ORDER BY, GROUP Function, SQL Function, JOIN, Set Operation, SQL Sub Queries. Views : What is Views, Create, Drop and Retrieving data from views.
- G Security: Management of Roles, Changing Passward, Granting Roles & Privilege, with drawing privileges.
- (d) PL/SQL : Block Structure in PL/SQL, Variable and constants, Running PL/SQL in the SQL\*PLUS, Data base Access with PL/SQL, Exception Handling, Record Data type in PL/SQL, Triggers in PL/SQL.

#### UNIT-4 : G.U.I. PROGRAMMING

- (a) Introduction to Visual Basic : Event Driven Programming, IDE, Introduction to Object, Controlling Objects, Models and Events, Working with Forms, MDI Form Working with standard Controls.
- (b) Overview of Variables, Declaring, Scope, Arrays, User defined data types, Constants, Working with procedures : Function, Subroutine, and Property.

B.St.-TIT

Swers

(c. K-Gavel) Anights

(51)

D2. Suryay anna (c. K-Gavel) Anights

(51)

(Dr.A.K.Daivedi) (Dr.J.Dray ld. Lus)

Working with Data, Time, Format, String, and Math's Function. Controlling Program Execution: Comparison and Logical Operators, If... Then statements, Select Case Statement, Looping Structures, Exiting a loop. Error Trapping and Debugging.

d File Organization : Saving data to file, Sequential and Random access file, the desing and coding.

#### UNIT-5 : V DATA BASE PROGRAMMING IN VB

- (a) Introduction :- Concept of DAO, RDO, ADO, input validation : field & form level validation, ADO object model : the ADO object Hierarchy, the connection object, the command object, record set object, parameter object, field object, record object, stream object, Error object, parameter object.
- (b) Using Bound control to Present ADO data: Using the ADO data control, ADO data control properties, binding simple controls: Data list, data combo, Data Grid, Data Form Wizard : single form wizard, Grid form, master/Detail form. Programming the ADO data control: Refresh method, Event, Hierarchical flex Grid control.
- (d) Data Environment & Data Report : Creating connection, Using command object in the data Environment, Data Environment option and operation, Binding Form to the data Environment, ADO Events in the Data report, Print Preview, Print, Export, Data report in code: Data reports Events, Binding data reports Directly.

#### REFERENCE BOOKS :

- By Hery F. Korth, Tata McGraw Hill Data Base System Concept
- Fundamental of Data Base Nawathe & Elmasri (Pearson educations) System Concept
- 3. Oracle Complete Reference By Oracle Press
- 4 Introduction to COPS & VB By V.K. Jain, Vikas Publishing House
- Database Programming VB 6 By B.P.B. Publication

#### PRACTICALS :

#### Practicals on Oracle :

At least 20 practicals covering the SQL, PL/SQL, Triggers, Views.

#### Practicals on Visual Basic :

At least 20 pracricals on VB that covering basic and data controls components.

11.06.18

11.06.18

11.06.18

L. K. Gavel) Hari shanden Presed Touch

(Dr. J. Dogs for Read)

#### B.Sc. Part-III Paper-I

## RELATIVITY, QUANTUM MECHANICS, ATOMIC MOLECULAR AND NUCLEAR PHYSICS

- **Unit-1** Reference systems, inertial frames, Galilean invariance propagation of light, Michelson-Morley experiment, search for ether. Postulates for the special theory of relativity, Lorentz transformations, length contraction, time dilation, velocity addition, variation of mass with velocity, mass-energy equivalence, particle with zero rest mass.
- Unit-2 Origin of the quantum theory: Failure of classical physics to explain the phenomena such as black-body spectrum, photoelectric effect, Compton effect, Wave-particle duality, uncertainty principle, de Broglie's hypothesis for matter waves, the concept of Phase and group velocities, experimental demonstration of mater waves. Davisson and Germer's experiment. Consequence of de Broglie's concepts, Bohr's complementary Principle, Bohr's correspondence principle, Bohr's atomic model, energies of a particle in a box, wave packets. Consequence of the uncertainty relation, gamma ray microscope, diffraction at a slit.
- Unit-3 Quantum Mechanics: Schrodinger's equation, Statistical interpretation of wave function, Orthogonality and normalization of wave function, Probability current density, Postulatory basis of quantum mechanics, operators, expectation values, Ehrenfest's theorem, transition probabilities, applications to particle in a one and three dimensional boxes, harmonic oscillator in one dimension, reflection at a step potential, transmission across a potential barrier.
- Unit-4 Spectra of hydrogen, deuteron and alkali atoms spectral terms, doublet fine structure, screening constants for alkali spectra for s, p, d and f states, selection rules. Discrete set of electronic energies of moleculers, quantisation of vibrational and rotational energies, determination of inter-nuclear distance, pure rotational and rotation vibration spectra. Dissociation limit for the ground and other electronic states, transition rules for pure vibration and electronic vibration spectra. Raman effect, Stokes and anti-Stokes lines, complimentary character of Raman and infrared spectra, experimental arrangements for Raman spectroscopy.

11 |6 | 201

Moelle

Unit-5 Structure of nuclei:- Basic Properties of Nuclei: (1) Mass, (2) Radii, (3) Charge, (4) Angular Momentum, (5) Spin, (5) Magnetic Moment (μ), (6) Stability and (7) Binding Energy, Nuclear Models:- Liquid Drop Model, Mass formula, Shell Model, Types of Nuclear reactions, laws of conservation, Q-value of reactions, Interaction of Energetic particles with matter, Ionization chamber, GM Counter, Cloud Chambers, Fundamental Interactions, Classification of Elementary Particles, Particles and Antiparticles, Baryons, Hyperons, Leptons, and Mesons, Elementary Particle Quantum Numbers: Baryon Number, Lepton Number, Strangeness, Electric Charge, Hypercharge and Isospin, introductory idea of discovery of Higg's Boson.

#### **TEXT AND REFERENCE BOOKS:**

- 1. H.S. Mani and G.K. Metha: "Introduction to Modern Physics"" (Affiliated East-West Press, 1989).
- 2. A Beiser, "Prospective of Modern Physics".
- 3. H.E. White, Introduction to Atomic Physic".
- 4. Barrow, "Introduction to Molecular Physics".
- 5. R.P. Feynman, R.B. Leighton and M Sands, "The Feynman Lectures on Physics", Vol.III (B.I. Publications, Bombay, Delhi, Calcutta, Madras).
- 6. T.A. Littlefield and N Thorley, "Atomic and Nuclear Physics" (Engineering Language Book Society)
- 7. H.A. Enge, "Introduction to Nuclear Physics", (Addision-Wesly)
- 8. Eisenberg and Resnick, "Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles" (John Wiley)
- 9. D.P. Khandelwal, "Optics and Atomic Physics", (Himalaya Publishing House, Bombay, 1988).
- 10. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi, 1984.
- 11. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
- 12. Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991).

#### Paper-II SOLID STATE PHYSICS, SOLID STATE DEVICES AND ELECTRONICS

- Unit-1 Amorphous and crystalline solids, Elements of symmetry, seven crystal system, Cubic lattices, Crystal planes, Miller indices, Laue's equation for X-ray diffraction, Bragg's Law, Bonding in solids, classification. Cohesive energy of solid, Madelung constant, evaluation of Parameters, Specific heat of solids, classical theory (Dulong-Petit's law), Einstein and Debye theories, Vibrational modes of one dimensional monoatomic lattice, Dispersion relation, Brillouin Zone.
- Unit-2 Free electron model of a metal, Solution of one dimensional Schrödinger equation in a constant potential, Density of states, Fermi Energy, Energy bands in a solid (Kronig-Penny model without mathematical details), Difference between Metals, Insulator and Semiconductors, Hall effect, Dia, Para and Ferromagnetism, Langevin's theory of dia and para-magnetism, Curie- Weiss's Law, Qualitative description of Ferromagnetism (Magnetic domains), B-H curve and Hysteresis loss.
- Unit-3 Intrinsic and extrinsic semi conductors, Concept of Fermi level, Generation and recombination of electron hole pairs in semiconductors, Mobility of electrons and holes, drift and diffusion currents, p-n junction diode, depletion width and potential barrier, junction capacitance, I-V characteristics, Tunnel diode, Zener diode, Light emitting diode, solar cell, Bipolar transistors, pnp and npn transistors, characteristics of transistors, different configurations, current amplification factor, FET and MOSFET Characteristics.
- Unit-4 Half and full wave rectifier, rectifier efficiency ripple factor, Bridge rectifier, Filters, Inductor filter, L and  $\pi$  section filters, Zener diode, regulated power supply using zener diode, Applications of transistors, Bipolar Transistor as amplifier, h-parameter, h-parameter equivalent circuit, Transistor as power amplifier, Transistor as oscillator, principle of an oscillator and Bark Hausen's condition, requirements of an oscillator, Wein-Bridge oscillator and Hartley oscillator.
- Unit-5 Digital Circuits: Difference between Analog and Digital Circuits, Binary Numbers, Decimal to Binary and Binary to Decimal Conversion, AND, OR and NOT Gates (Realization using Diodes and Transistor), NAND and NOR Gates as Universal Gates, XOR and XNOR Gate, De Morgan's Theorems, Boolean Laws, Simplification of Logic Circuit using Boolean Algebra, Digital to Analog Converter, Analog to Digital Converter.

#### **TEXT AND REFERENCE BOOKS:**

- 1. Introduction to solid state physics: C. Kittel.
- 2. Solid State Physics: A.J. Dekkar.
- 3. Electronic Circuits: Mottershead.
- 4. Electronic Circuits: Millman and Halkias.
- 5. Semiconductor Devices: S.M. Sze.
- 6. Electronic devices: T.L. Floyd.
- 7. Device and Circuits: J. Millman and C. Halkias.
- 8. Electronic Fundamental and Applications: D. Chatopadhyay and P.C. Rakshit.
- 9. Electricity and Magnetism: K.K. Tiwari.

#### **PRACTICALS**

#### Minimum 16 (Eight from each group)

#### Experiments out of the following or similar experiments of equal standard

- 1. Determination of Planck's constant.
- 2. Determination of e/m by using Thomson tube.
- 3. Determination of e by Millikan's methods.
- 4. Study of spectra of hydrogen and deuterium (Rydberg constant and ratio of masses of electron proton).
- 5. Absorption spectrum of iodine vapour.
- 6. Study of alkali or alkaline earth spectra using a concave grating.
- 7. Study of Zeeman effect for determination of a Lande g-factor.
- 8. Analysis of a given band spectrum.
- 9. Study of Raman spectrum using laser as an excitation source.
- 10. Study of absorption of alpha and beta rays.
- 11. Study of statistics in radioactive measurement.
- 12. Coniometric study of crystal faces.
- 13. Determination of dielectric constant.
- 14. Hysteresis curve of transformer core.
- 15. Hall-probe method for measurement of magnetic field.
- 16. Specific resistance and energy gap of semiconductor.
- 17. Characteristics of transistor.
- 18. Characteristics of tunnel diode.
- 19. Study of voltage regulation system.
- 20. Study of regulated power supply.

- 21. Study of lissajous figures using CRO.
- 22. Study of VTVM.
- 23. Study of RC and TC coupled amplifiers.
- 24. Study of AF and RF oscillators.
- 25. Find roots of f(x) = 0 by using Newton-Raphson Method.
- 26. Find root of f(x) = 0 by using secant method.
- 27. Integration by Simpson rule.
- 28. To find the value of V at
- 29. String manipulations.
- 30. Towers of Hanoi (Non-recursive).
- 31. Finding first four perfect numbers.
- 32. Quadratic interpolation using Newton's forward-difference formula of degree two.

#### **TEXT AND REFERENCE BOOKS:**

- 1. B.G. Strechman, Solid state electronics devices II edition (Prentice-Hall of India New Delhi 1986)
- 2. W.D. Stanley, Electronics devices, circuits and applications (Prentice-Hall new jersey, USA 1988).
- 3. S. Lipschutz and A Poe; Schaum's outline of theory and problems of programming with Fortran (Mc Graw-Hill Book Co. Singapore, 1986).

4. C Dixon, Numerical Analysis.

#### **Zoology**

#### B.Sc. Part III 2018-19

#### Paper-I

## ECOLOGY, ENVIRONMENTAL BIOLOGY: TOXICOLOGY, MICROBIOLOGY AND MEDICAL ZOOLOGY

#### Unit: I (Ecology)

- Aims and scopes of ecology
- Major ecosystems of the world-Brief introduction
- Population- Characteristics and regulation of densities
- Communities and ecosystem
- Bio-geo chemical cycles
- Air & water pollution
- Ecological succession

#### **Unit: II (Environmental Biology)**

- Laws of limiting factor
- Food chain in fresh water ecosystem
- Energy flow in ecosystem- Trophic levels
- Conservation of natural resources
- Environmental impact assessment

#### **Unit: III (Toxicology)**

- Definition and classification of Toxicants
- Basic Concept of toxicology
- Principal of systematic toxicology
- Heavy metal Toxicity (Arsenic, Murcury, Lead, Cadmium)
- Animal poisons- snake venom, scorpion & bee poisoning
- Food poisoning

#### **Unit: IV (Microbiology)**

- General and applied microbiology
- Microbiology of domestic water and sewage
- Microbiology of milk & milk products
- Industrial microbiology: fermentation process, production of penicillin, alcoholic breverages, bioleaching.

#### **Unit:V** (Medical Zoology)

- Brief introduction to pathogenic microorganisms, Ricketssia, Spirochaetes, AIDS and Typhoid
- Brief account of life history & pathogenicity of the following pathogens with reference to man: prophylaxis & treatment
- Pathogenic protozoan's- Entamoeba, Trypanosome & Plasmodium
- Pathogenic helminthes- Schistosoma
- Nematode pathogenic parasites of man
- Vector insects

#### Zoology B.Sc. Part III 2018-19 Paper II

### GENETICS, CELL PHYSIOLOGY, BIOCHEMISTRY, BIOTECHNOLOGY AND BIOTECHNIQUES

#### **Unit: I (Genetics)**

- Linkage & linkage maps, Sex Determination and Sex Linkage
- Gene interaction- Incomplete dominance & Codominance, Supplementary gene, Complementary gene, Epistasis Lethal gene, Pleiotropic gene and multiple alleles.
- Mutation: Gene and chromosomal mutation
- Human genetics: chromosomal alteration: Down, Edward, Patau, Turner and Klinefelter Syndrome Single gene disorders: Alkaptonuria, Phenylketonuria, Sickle cell anemia, albinism and colour blindness

#### **Unit: II (Cell Physiology)**

- General idea about pH & buffer
- Transport across membrane: Diffusion and Osmosis
- Active transport in mitochondria & endoplasmic reticulum
- Enzymes-classification and Action

#### **Unit: III (Biochemistry)**

- Amino acids & peptides- Basic structure & biological function
- Carbohydrates & its metabolism- Glycogenesis; Gluconeogenesis; Glycolysis;
   Glycogenolysis; Cosi-cycle
- · Lipid metabolism- Oxidation of glycerol; Oxidation of fatty acids
- Protein Catabolism- Deamination, transamination, transmethylation

#### **Unit: IV (Biotechnology)**

- Application of Biotechnology
- Recombinant DNA & Gene cloning
- Cloned genes & other tools of biotechnology (Tissue culture, Hybridoma, Trasgenic Animals and Gene library)

#### **Unit: V (Biotechniques)**

- 1. Principles & techniques about the faollowing:
  - (i) pH meter
  - (ii) Colorimeter
  - (iii) Microscopy- Light microscopes: Compound, Phase contrast & Electron microscopes
  - (iv) Centrifuge
  - (v) Separation of biomolecules by chromatography & electrophoresis

# B. Sc. Part III 2018-19 Zoology Practical

The practical work in general shall be based on syllabus prescribed in theory.

The candidates will be required to show knowledge of the following:

- Estimation of population density, percentage frequency, relative density.
- Analysis of producers and consumers in grassland.
- Detection of gram-negative and gram-positive bacteria.
- Blood group detection (A,B,AB,O)
- R. B. C. and W.B.C count
- Blood coagulation time
- Preparation of hematin crystals from blood of rat
- Observation of Drosophila, wild and mutant.
- Chromatography-Paper or gel.
- Colorimetric estimation of Protein.
- Mitosis in onion root tip.
- Biochemical detection of Carbohydrate, Protein and Lipid.
- Study of permanent slides of parasites, based on theory paper.
- Working principles of pH meter, colorimeter, centrifuge and microscope.

#### Scheme of marks distribution **Time: 3:30hrs** Hematological Experiment 08 Ecological Experiment: Grassland Ecosystem/ 06 Population Density/Frequency/relative density Bacterial staining 05 Biochemical experiment 06 Practical based on Instrumentation (Chromatography/ pH meter/microscope/centrifuge. 05 Spotting (5 spots) 10 7 Viva 05 8. Sessional 05